
LICMF UAT Website

URL = http://licmfnew.cmots.com/

WEB-01 SQL Injection

Finding ID WEB-01

Severity Critical

Status Open

Title SQL Injection

Path / File http://licmfnew.cmots.com/investor/fund-overview/All#showcontent

Description We have observed that
http://licmfnew.cmots.com/investor/fund-overview/All#showcontent this URL with
post request having parameters “Risk, sip_type, fund_type” is vulnerable to Error Base
SQL injection.
Payload Used:
'UNION+ALL+SELECT+database(),2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
--+&
Error-based SQL injection is an In-band injection technique where the error output from
the SQL database is used to manipulate the data inside the database. In In-band injection,
the attacker uses the same communication channel for both attacks and collect data
from the database

Remediatio
n

Don’t use dynamic SQL
● Avoid placing user-provided input directly into SQL statements.
● Prefer prepared statements and parameterized queries, which are much safer.
● Stored procedures are also usually safer than dynamic SQL.
Sanitize user-provided inputs
● Properly escape those characters which should be escaped.
● Verify that the type of data submitted matches the type expected.
Don’t leave sensitive data in plaintext
● Encrypt private/confidential data being stored in the database.
● Salt the encrypted hashes.
● This also provides another level of protection just in case an attacker successfully
exfiltrates sensitive data.
Limit database permissions and privileges
● Set the capabilities of the database user to the bare minimum required.
● This will limit what an attacker can do if they manage to gain access.
Avoid displaying database errors directly to the user
● Attackers can use these error messages to gain information about the database.

Evidence

Reference https://www.indusface.com/blog/blind-sql-injection-attacks/

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_She
et.html

WEB-02 UI Redressing (Clickjacking)

Finding ID WEB-02

Severity Medium

Status Open

Title UI Redressing (Click Jacking)

Path / File http://licmfnew.cmots.com/distributor

Description Clickjacking is an attack that tricks a user into clicking a webpage element which is
invisible or disguised as another element. This can cause users to unwittingly download
malware, visit malicious web pages, provide credentials or sensitive information,
transfer money, or purchase products online.
Typically, clickjacking is performed by displaying an invisible page or HTML element,
inside an iframe, on top of the page the user sees. The user believes they are clicking
the visible page but in fact they are clicking an invisible element in the additional page
transposed on top of it.

Remediation Sending the proper Content Security Policy (CSP) frame-ancestors directive response
headers that instruct the browser to not allow framing from other domains. (This
replaces the older X-Frame-Options HTTP headers.)
Employing defensive code in the UI to ensure that the current frame is the most top-
level window.

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
http://licmfnew.cmots.com/distributor

Evidence

Reference https://owasp.org/www-community/attacks/Clickjacking

https://www.imperva.com/learn/application-security/clickjacking/

WEB-03 Missing HTTP Security Headers

Finding ID WEB-03

Severity Low

Status Open

Title Missing HTTP Security Headers

Path / File http://licmfnew.cmots.com/distributor

Description HTTP headers are well-known and also despised. Seeking a balance between usability
and security, developers implement functionality through the headers that can make
applications more versatile or secure.
Headers are part of the HTTP specification, defining the metadata of the message in
both the HTTP request and response. While the HTTP message body is often meant to
be read by the user, metadata is processed exclusively by the web browser and has been
included in HTTP protocol since version 1.0

Remediatio
n

You can use these headers to outline communication and improve web security:
1.HTTP Strict Transport Security (HSTS)
HTTP Strict Transport Security (HSTS) is a web security policy mechanism whereby a web
server declares that complying user agents (such as a web browser) are to interact with
it using only secure (HTTPS) connections. The HSTS Policy is communicated by the server
to the user agent via a HTTP response header field named "Strict-Transport-Security".
HSTS Policy specifies a period of time during which the user agent shall access the server
in only secure fashion.
2.Content Security Policy (CSP)
Content Security Policy (CSP) is a computer security standard that provides an added
layer of protection against Cross-Site Scripting (XSS), clickjacking, and other code
injection attacks that rely on executing malicious content in the context of a trusted web
page. By using suitable CSP directives in HTTP response headers, you can selectively

http://licmfnew.cmots.com/distributor

specify which data sources should be permitted in your web application. This article
shows how to use CSP headers to protect websites against XSS attacks and other
attempts to bypass same-origin policy.
3. X-XSS-Protection
As the name implies, the X-XSS-Protection header was introduced to protect against
JavaScript injection attacks through cross-site scripting. This filter doesn’t let the page
load when it detects a cross-site scripting attack.
4. X-Frame-Options
This header was first introduced in Microsoft Internet Explorer to provide protection
against cross-site scripting attacks involving HTML iframes.
X-Frame-Options help guard against some kind of attacks such as clickjacking by
disabling the iframes present on the site. In other words, it doesn’t let others embed
your content.

Evidence

Reference https://wiki.owasp.org/index.php/OWASP_Secure_Headers_Project

WEB-04 Vulnerable jQuery Version

Finding ID WEB-04

Severity Low

Status Open

Title Vulnerable jQuery Version

Path / File http://licmfnew.cmots.com/assets/js/jquery.min.js

Description It has been observed that the application is using an old jQuery version i.e., 3.4.0 which
has public exploits available. And is vulnerable to cross-site scripting.
jQuery is a package that makes things like HTML document traversal and manipulation,
event handling, animation, and Ajax much simpler with an easy-to-use API that works
across a multitude of browsers.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) Passing
HTML containing <option> elements from untrusted sources - even after sanitizing it -
to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may
execute untrusted code.

Remediation Update jQuery to latest stable version i.e., jQuery 3.5.1

http://licmfnew.cmots.com/assets/js/jquery.min.js

Evidence

Reference https://www.netsparker.com/web-vulnerability-scanner/vulnerabilities/out-of-date-

version-jquery/

WEB-05 Unencrypted Communications

Finding ID WEB-05

Severity Low

Status Open

Title Unencrypted Communications

Path / File http://licmfnew.cmots.com/distributor

Description The application allows users to connect to it over unencrypted connections. An attacker
suitably positioned to view a legitimate user's network traffic could record and monitor
their interactions with the application and obtain any information the user supplies.
Furthermore, an attacker able to modify traffic could use the application as a platform
for attacks against its users and third-party websites. Unencrypted connections have
been exploited by ISPs and governments to track users, and to inject adverts and
malicious JavaScript. Due to these concerns, web browser vendors are planning to
visually flag unencrypted connections as hazardous. To exploit this vulnerability, an
attacker must be suitably positioned to eavesdrop on the victim's network traffic. This
scenario typically occurs when a client communicates with the server over an insecure
connection such as public Wi-Fi, or a corporate or home network that is shared with a
compromised computer. Common defences such as switched networks are not
sufficient to prevent this. An attacker situated in the user's ISP or the application's
hosting infrastructure could also perform this attack. Note that an advanced adversary
could potentially target any connection made over the Internet's core infrastructure.
Please note that using a mixture of encrypted and unencrypted communications is an
ineffective defence against active attackers, because they can easily remove references
to encrypted resources when these references are transmitted over an unencrypted
connection.

Remediatio
n

Applications should use transport-level encryption (SSL/TLS) to protect all
communications passing between the client and the server. The Strict-Transport-

http://licmfnew.cmots.com/distributor

Security HTTP header should be used to ensure that clients refuse to access the server
over an insecure connection.

Evidence

Reference https://portswigger.net/kb/issues/01000200_unencrypted-communications

WEB-06 Vulnerable jQuery Version

Finding ID WEB-06

Severity Low

Status Open

Title Vulnerable jQuery Version

Path / File https://clientwebsitesuat2.kfintech.com/licempanel/Scripts/jquery-1.10.2.js

Description It has been observed that the application is using an old jQuery version i.e. 1.10.2
which has public exploits available. And is vulnerable to cross-site scripting.
jQuery is a package that makes things like HTML document traversal and manipulation,
event handling, animation, and Ajax much simpler with an easy-to-use API that works
across a multitude of browsers.
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) Passing
HTML containing <option> elements from untrusted sources - even after sanitizing it -
to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may
execute untrusted code.

Remediation Update jQuery to latest stable version i.e., jQuery 3.5.1

https://clientwebsitesuat2.kfintech.com/licempanel/Scripts/jquery-1.10.2.js

Evidence

Reference https://www.netsparker.com/web-vulnerability-scanner/vulnerabilities/out-of-date-

version-jquery/

